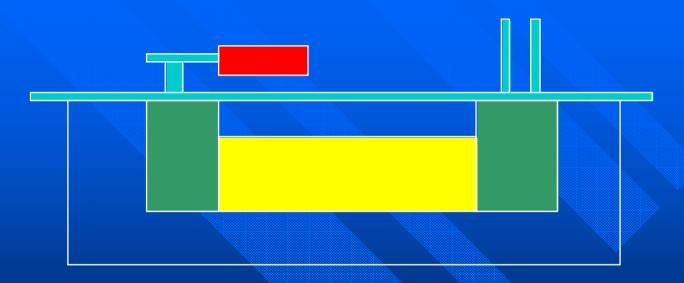
Sputtering Components Inc

ロータリーカソード ドライブユニット

Rotary の欠点(対平面)


- ■ターゲットコストが割高
- □回転する為、トラブルが多い
- パーツが多くメンテナンスが割高

Rotary の利点(対平面)

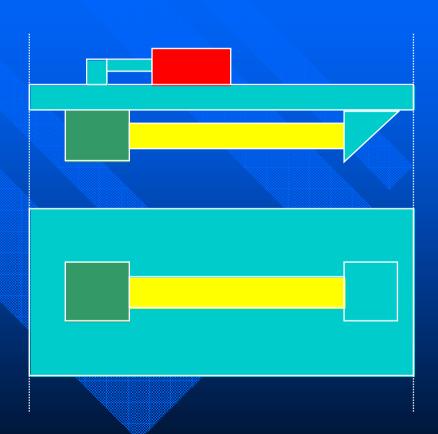
- ■ターゲット使用効率最大90%
- ■ノージュール、アーキングの減少
- ハイパワー、ハイスパッタレート
- ■長時間連続稼動が可能

A社

- ■両持ち
- ターゲット交換10時間/本
- リークトラブル多

B社

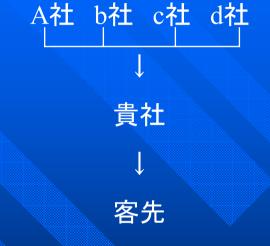
- ■両持ち
- ターゲット交換30分/本
- メンテナンス高
- ■ターゲット拘束


C社

- 片持ち
- チャンバーに穴
- ターゲット交換30分/本
- ■メンテナンス割高

SCI社

ターゲット交換時間 ターゲット メンテナンス 搭載スペース コスト メンテナンスコスト


SCI ロータリーの利点 対 他社

- ■ターゲットを拘束しない
- メンテコスト五分の1以下
- 客先でスペアヘッドを持つ必要なし
- 電蝕がない
- 電極のコンタミリスクが無い
- 急激なシェア上昇率
- ■カスタム対応可
- 強力マグネットバー
- ヘッドがコンパクト (15cm x 15cm x 19cm)
- ■短時間でターゲット交換可能
- ■プレーナーからの改造が容易
- 低価格 (0.7掛け)

ターゲットを拘束しない

A社(高い)
↓

客先

- ・高いターゲットしか使えない為、客先不満
- ・ターゲット種開発依存
- ・安価なターゲットを提案可能
- ・ターゲット種開発可能
- ・貴社による独自ターゲット提案可能

スペアヘッドをもつ必要が無い

他社:ヘッド内が複雑

SCI社: ヘッド内がシンプル

ユーザーで分解不可
↓
メンテ返送/年
↓
納期2ヶ月
↓

ユーザーで分解可

スペアエンドブロックをもつ必要なし

↓

消耗部材も市販品

ユーザーでメンテ可能

スペアエンドブロック必要

消耗部材が安価

10,000時間毎	概算コスト	概算時間
Rotary Vacuum Seals (2)	\$130.00/個	1 時間
Rotary Water Seals (2)	\$130.00 /個	2 時間
Outboard Spindle Bushing (1)	\$130.00 /個	1/4時間
Magnet Assembly Outboard Support Bushing (1)	\$75.00 /個	¼時間
Electrical Contact Ring (1)	\$390.00 /個	¼時間
20,000時間毎		
Magnet Assembly Outboard Wear Sleeve (1)	\$130.00 /個	1/4時間

●状況次第
Drive Belt
Main Bearings
Drive Shaft resurface (seal friction area)
Outboard Spindle resurface/sleeve OD (bushing friction area)
Drive Motor
Gear Head

電極の削り粉

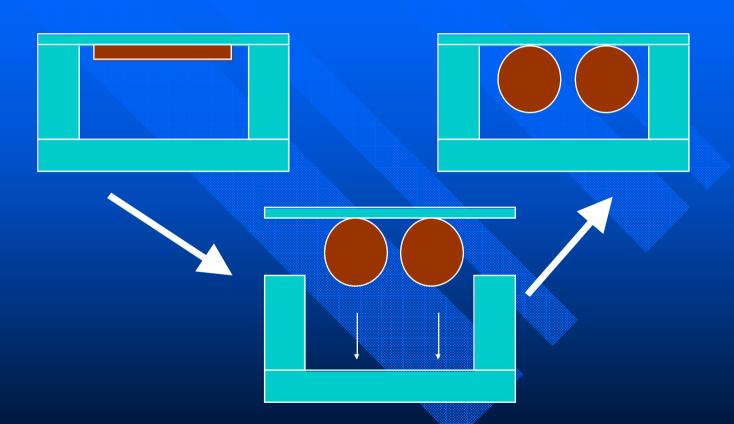
他社

SCI

電極の削り粉が発生 ↓ ショート・アーキング 電極の削り粉が発生しない 構造 ↓ ヘッド内でのショート無し

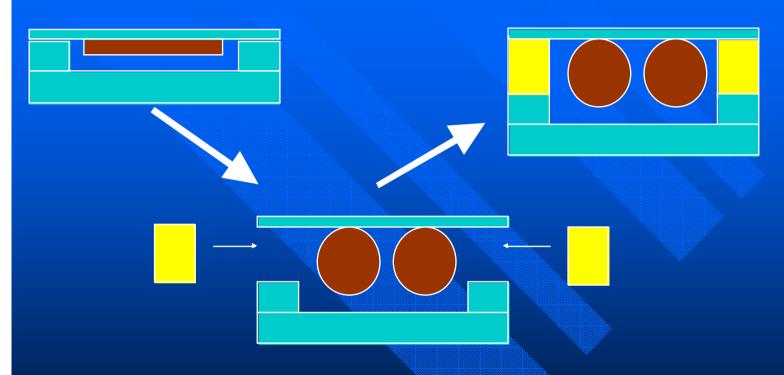
電蝕が発生しない

他社 SCI


水を介し電位差が発生

電蝕発生(錆びる)

電位差が発生しにくい構造


電蝕無し

プレーナーからの改造が容易(1)

十分なTSがあればそのままDrop-InでOK

プレーナーからの改造が容易(2)

十分なTSがない場合、下駄を履かせる

短時間でターゲット交換可能

他社の場合

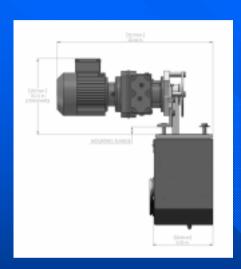
SCIの場合

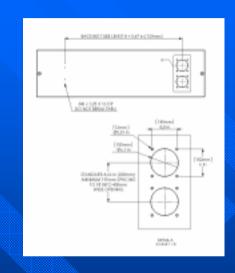

・最短でも 15分以上 クランプ式で片持ちな為、6分弱

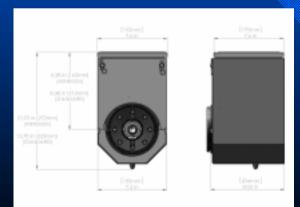
・水殆ど残らない

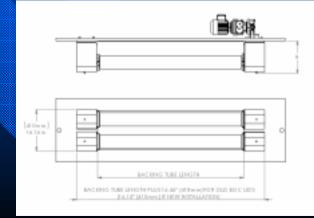
・水残る

ビデオ

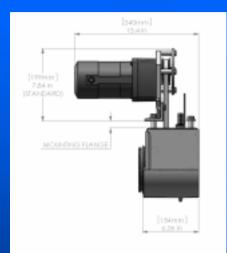

カスタム対応(1)

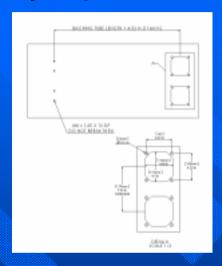


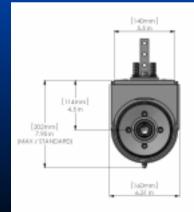

Wall

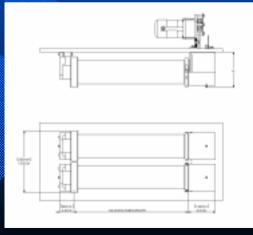


スタンダード 60KW以上



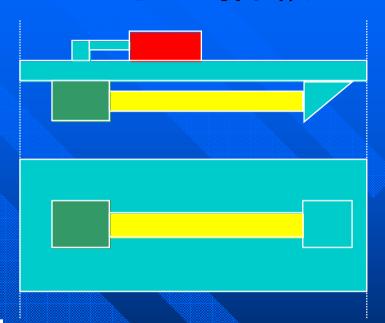


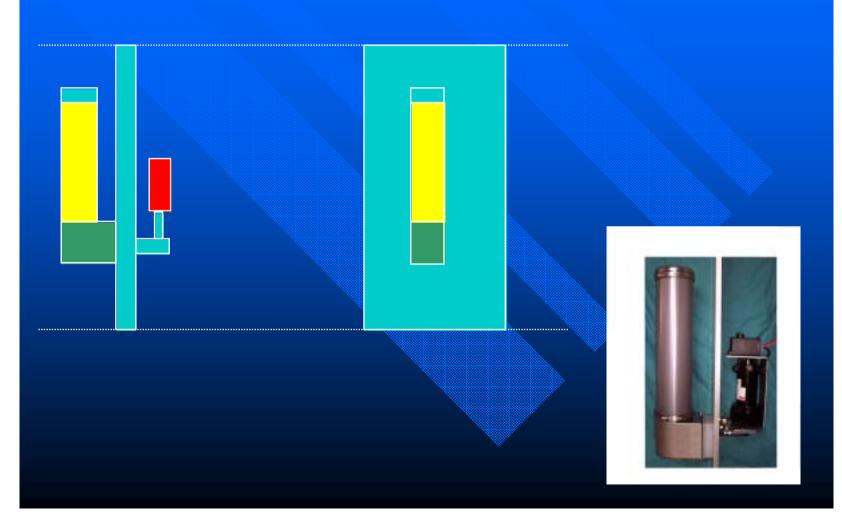



三二 60KW以下

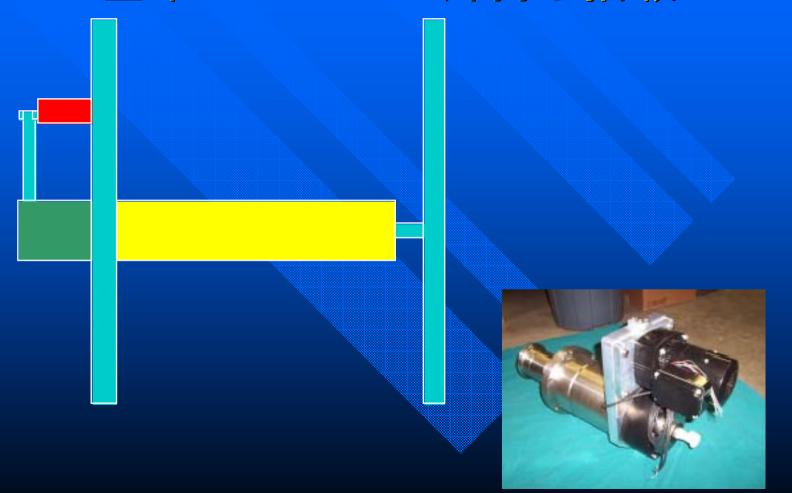
カスタム対応(2)

標準ドライブ

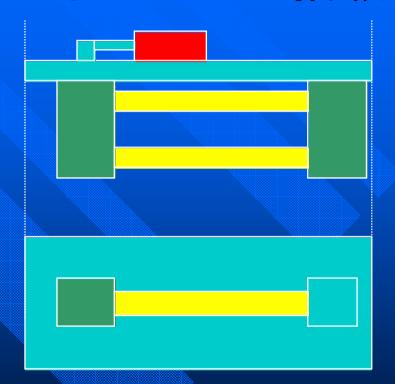


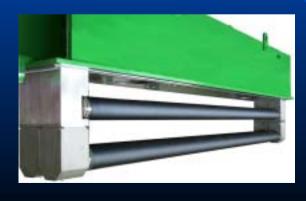

基本コンセプト・水平搭載

ターゲット交換時間 ターゲット メンテナンス 搭載スペース コスト メンテナンスコスト



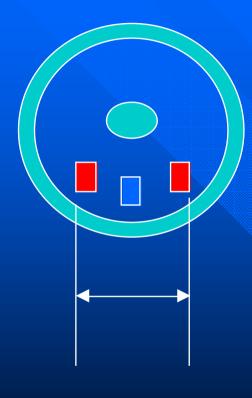
基本コンセプト・垂直搭載



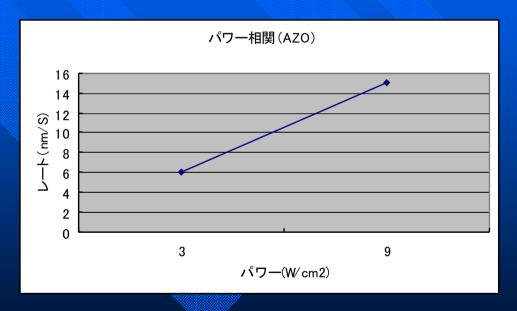

基本コンセプト・片持ち搭載

基本コンセプト・水平ダブル搭載

Drop Inタイプで 両面コート



急激なシェア拡大


2007年販売実績

- ●ソーラーセル向け 100ユニット------米国・完納 21ユニット------米国・5月末までに完納予定 100ユニット------米国・2008年5月に追加受注
- ●光学フィルム向け50ユニット----ドイツ
- ●建築用ガラス向け 26ユニット-----米国 4ユニット----中国 6ユニット----ヨーロッパ
- ●その他非開示 2ユニット----中国 7ユニット----ヨーロッパ 1

概算パワー算出方法

4cm x ターゲット長さ

4cm

 $6 \text{ nm/s at } 3 \text{ w/cm2} \Rightarrow 15 \text{ nm/s at } 9 \text{ w/cm2}$

ターゲット長さ算出方法

バッキングチューブ長さ=基板長さ+2(TS x 2)

 \downarrow

±5% (保証値では御座いません。)

他社比較

	他社	SCI	
保持方式	両持ち	片持ち	
ターゲット交換	30分/本	5分/本	
搭載方式	不明	垂直可	
電蝕	発生する	発生しにくい	
電極パーティクル	発生する	発生しない	
保守部品	メーカー純正のみ	市販品	
エンドブロック保守	メーカー返却	返却必要なし	
保守コスト指数		0.1	
ターゲット	メーカー純正のみ	拘束しない	
コスト指数	1	0.7	